Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) | $f, g : X \to [-\infty, \infty]$ are each a D5566: Measurable basic function on $M$ |
(ii) | \begin{equation} \Vert f \Vert_{L^1}, \Vert g \Vert_{L^1} < \infty \end{equation} |
(iii) | \begin{equation} f \overset{a.e.}{\leq} g \end{equation} |
Then
\begin{equation}
\int_X f \, d \mu
\leq \int_X g \, d \mu
\end{equation}