Let $\emptyset$ be the D13: Empty set.
Let $X_j$ be a D11: Set for each $j \in J$ such that
Let $X_j$ be a D11: Set for each $j \in J$ such that
(i) | \begin{equation} J \neq \emptyset \end{equation} |
(ii) | \begin{equation} X_{j_0} = \emptyset \end{equation} |
Then
\begin{equation}
\bigcup_{j \in J} X_j
= \bigcup_{j \in J \setminus \{ j_0 \}} X_j
\end{equation}