Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) | $E, F \in \mathcal{F}$ are each a D1109: Measurable set in $M$ |
(ii) | $E \subseteq F$ is a D78: Subset of $F$ |
(iii) | \begin{equation} \mu(E) < \infty \end{equation} |
Then
\begin{equation}
\mu(E \triangle F)
= \mu(F) - \mu(E)
\end{equation}