ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4755 on D529: Map inverse image
Inverse image of a reflected real set
Formulation 0
Let $f : X \to \mathbb{R}$ be a D4364: Real function such that
(i) $B \subseteq \mathbb{R}$ is a D78: Subset of $\mathbb{R}$
Then \begin{equation} f^{-1}(- B) = (- f)^{-1}(B) \end{equation}
Subresults
R4756
Proofs
Proof 0
Let $f : X \to \mathbb{R}$ be a D4364: Real function such that
(i) $B \subseteq \mathbb{R}$ is a D78: Subset of $\mathbb{R}$
We have \begin{equation} \begin{split} f^{-1}(-B) & = \{ x \in X : f(x) \in - B \} \\ & = \{ x \in X : f(x) \in - \{ b : b \in B \} \} \\ & = \{ x \in X : f(x) \in \{ - b : b \in B \} \} \\ & = \{ x \in X : \exists \, b \in B \text{ such that } f(x) = - b \} \\ & = \{ x \in X : \exists \, b \in B \text{ such that } - f(x) = b \} \\ & = \{ x \in X : - f(x) \in B \} \\ & = (- f)^{-1}(B) \end{split} \end{equation} $\square$