Let $T \in \text{Exp}(1)$ be a D4000: Standard exponential random positive real number.
Let $B \in \mathcal{B}(\mathbb{R})$ be a D5113: Standard real Borel set.
Let $B \in \mathcal{B}(\mathbb{R})$ be a D5113: Standard real Borel set.
Then
\begin{equation}
\mathbb{P}(T \in B)
= \int_B e^{- t} I_{[0, \infty)}(t) \, d t
\end{equation}