ThmDex – An index of mathematical definitions, results, and conjectures.
Strong derivative for affine euclidean real function
Formulation 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}^{M \times 1}$ be a D4363: Euclidean real function such that
(i) \begin{equation} \exists \, A \in \mathbb{R}^{M \times N} \text{ and } b \in \mathbb{R}^{M \times 1} : \forall \, x \in \mathbb{R}^{N \times 1} : f(x) = A x + b \end{equation}
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}^{M \times 1}$ be a D4364: Real function such that
(i) \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} : L(x) = A x \end{equation}
Then $L$ is a D111: Euclidean real function derivative for $f$ on $\mathbb{R}^{N \times 1}$.
Subresults
R4903: Strong derivative for affine basic real function
Proofs
Proof 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}^{M \times 1}$ be a D4363: Euclidean real function such that
(i) \begin{equation} \exists \, A \in \mathbb{R}^{M \times N} \text{ and } b \in \mathbb{R}^{M \times 1} : \forall \, x \in \mathbb{R}^{N \times 1} : f(x) = A x + b \end{equation}
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}^{M \times 1}$ be a D4364: Real function such that
(i) \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} : L(x) = A x \end{equation}
Let $\varepsilon > 0$. If $x, x_0 \in \mathbb{R}^{N \times 1}$ such that $x \neq x_0$, then we have \begin{equation} \begin{split} \frac{|f(x) - f(x_0) - L(x - x_0)|}{|x - x_0|} & = \frac{|A x + b - (A x_0 + b) - A (x - x_0)|}{|x - x_0|} \\ & = \frac{|A x + b - A x_0 - b - A x + A x_0)|}{|x - x_0|} \\ & = \frac{|0|}{|x - x_0|} \\ & = 0 \\ & < \varepsilon \end{split} \end{equation} Since $\varepsilon > 0$ was arbitrary, the claim follows. $\square$