Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4363: Euclidean real function such that
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) | \begin{equation} \exists \, b \in \mathbb{R}^{N \times 1} : \forall \, x \in \mathbb{R}^{N \times 1} : f(x) = (x - b)^T (x - b) \end{equation} |
(i) | $x_0 \in \mathbb{R}^{N \times 1}$ is a D5200: Real column matrix |
(ii) | \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} : L(x) = 2 (x_0 - b)^T x \end{equation} |
Then $L$ is a D5681: Real function derivative for $f$ at $x_0$.