Let $T_1, \ldots, T_N \in \text{Exp}(\theta)$ each be an D214: Exponential random positive real number such that
Let $k \in \{ 1, \ldots, N \}$ be a D5094: Positive integer.
(i) | $T_1, \ldots, T_N$ is an D2713: Independent random collection |
Then
\begin{equation}
\mathbb{P}(T_k = \min(T_1, \dots, T_N))
= \frac{1}{N}
\end{equation}