Let $X_1, X_2, X_3, \ldots \in \text{Random}(\mathbb{R})$ each be a D3161: Random real number such that
(i) | $X_1, X_2, X_3, \ldots$ is an D3358: I.I.D. random collection |
(ii) | \begin{equation} \mathbb{E} |X_1|^2 < \infty \end{equation} |
(iii) | \begin{equation} \sigma^2 : = \text{Var} X_1 \end{equation} |
(iv) | $N \in \{ 1, 2, 3, \ldots \}$ is a D5094: Positive integer |
(v) | \begin{equation} \overline{X}_N : = \frac{1}{N} \sum_{n = 1}^N X_n \end{equation} |
Then
\begin{equation}
\mathbb{E} \left( \frac{1}{N} \sum_{n = 1}^N |X_n - \overline{X}_N|^2 \right)
= \frac{N - 1}{N} \sigma^2
\end{equation}