Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) | $N \in \{ 2, 3, 4, \ldots \}$ is a D5094: Positive integer |
(ii) | $a_1, \ldots, a_N \in \mathbb{R}^{N \times 1}$ are each a D5200: Real column matrix |
(iii) | $b_1, \ldots, b_N \in \mathbb{R}^{1 \times N}$ are each a D5201: Real row matrix |
(iv) | \begin{equation} A = \begin{bmatrix} a_1 & a_2 & \cdots & a_N \end{bmatrix} \end{equation} |
(v) | \begin{equation} A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} \end{equation} |
(vi) | $\pi : \{ 1, \ldots, N \} \to \{ 1, \ldots, N \}$ is a D6177: Standard transposition |
(vii) | \begin{equation} X = \begin{bmatrix} a_{\pi(1)} & a_{\pi(2)} & \cdots & a_{\pi(N)} \end{bmatrix} \end{equation} |
(viii) | \begin{equation} Y = \begin{bmatrix} b_{\pi(1)} \\ b_{\pi(2)} \\ \vdots \\ b_{\pi(N)} \end{bmatrix} \end{equation} |
Then
(1) | \begin{equation} \text{Det} X = - \text{Det} A \end{equation} |
(2) | \begin{equation} \text{Det} Y = - \text{Det} A \end{equation} |