Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix.
Let $S_N$ be a D4951: Set of standard N-permutations.
The determinant of $A$ is the D993: Real number
\begin{equation}
\text{Det} A
: = \sum_{\pi \in S_N} \left( \text{Sign}(\pi) \prod_{n = 1}^N A_{n, \pi(n)} \right)
\end{equation}