Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) | $N \in \{ 2, 3, 4, \ldots \}$ is a D5094: Positive integer |
(ii) | $a_1, \ldots, a_N \in \mathbb{R}^{N \times 1}$ are each a D5200: Real column matrix |
(iii) | $b_1, \ldots, b_N \in \mathbb{R}^{1 \times N}$ are each a D5201: Real row matrix |
(iv) | \begin{equation} A = \begin{bmatrix} a_1 & \cdots & a_k & \cdots & a_N \end{bmatrix} \end{equation} |
(v) | \begin{equation} A = \begin{bmatrix} b_1 \\ \vdots \\ b_k \\ \vdots \\ b_N \end{bmatrix} \end{equation} |
(vi) | $\lambda \in \mathbb{R}$ is a D993: Real number |
(vii) | \begin{equation} X = \begin{bmatrix} a_1 & \cdots & \lambda a_k & \cdots & a_N \end{bmatrix} \end{equation} |
(viii) | \begin{equation} Y = \begin{bmatrix} b_1 \\ \vdots \\ \lambda b_k \\ \vdots \\ b_N \end{bmatrix} \end{equation} |
Then
(1) | \begin{equation} \text{Det} X = \lambda \text{Det} A \end{equation} |
(2) | \begin{equation} \text{Det} Y = \lambda \text{Det} A \end{equation} |