Let $X$ be a D11: Set.
A D11: Set $\mathcal{T} \subseteq \mathcal{P}(X)$ is a bottom topology on $X$ if and only if
\begin{equation}
\mathcal{T} = \{ \emptyset, X \}
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Subset |
▼ | Power set |
▼ | Hyperpower set sequence |
▼ | Hyperpower set |
▼ | Hypersubset |
▼ | Subset algebra |
▼ | Topology |
▶ | D1162: Bottom topological space |
▶ | D442: Empty topology |