Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Standard N-operation
Indexed sum
Series
Power series
Convergent power series
Natural complex exponential function
Standard natural complex exponential function
Standard natural complex hyperbolic sine function
Standard natural hyperbolic sine function
Formulation 0
Let $x \mapsto e^x$ be the D1932: Standard natural real exponential function.
The standard natural hyperbolic sine function is the D4364: Real function \begin{equation} \sinh : \mathbb{R} \to \mathbb{R}, \quad \sinh(x) = \frac{1}{2} (e^x - e^{-x}) \end{equation}
Formulation 1
Let $\exp$ be the D1932: Standard natural real exponential function.
The standard natural hyperbolic sine function is the D4364: Real function \begin{equation} \sinh : \mathbb{R} \to \mathbb{R}, \quad \sinh(x) = \frac{1}{2} (\exp(x) - \exp(-x)) \end{equation}
Child definitions
» D6033: Standard natural hyperbolic tangent function