ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Operation ▼ N-operation ▼ Binary operation ▼ Enclosed binary operation ▼ Groupoid ▼ Semigroup ▼ Standard N-operation ▼ Indexed sum ▼ Series ▼ Power series ▼ Convergent power series ▼ Natural complex exponential function ▼ Standard natural complex exponential function ▼ Standard natural complex hyperbolic sine function
Definition D1934
Standard natural hyperbolic sine function

Let $x \mapsto e^x$ be the D1932: Standard natural real exponential function.
The standard natural hyperbolic sine function is the D4364: Real function $$\sinh : \mathbb{R} \to \mathbb{R}, \quad \sinh(x) = \frac{1}{2} (e^x - e^{-x})$$

Let $\exp$ be the D1932: Standard natural real exponential function.
The standard natural hyperbolic sine function is the D4364: Real function $$\sinh : \mathbb{R} \to \mathbb{R}, \quad \sinh(x) = \frac{1}{2} (\exp(x) - \exp(-x))$$
Children
 ▶ D6033: Standard natural hyperbolic tangent function