An D548: Ordered pair $G_X = (X, \mathcal{E}_X)$ is a

**supergraph**of $G_E$ if and only if

(1) | $E \subseteq X$ (D78: Subset) |

(2) | $\mathcal{E}_E \subseteq \mathcal{E}_X$ (D78: Subset) |

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Subset structure

▾ Hypergraph

▾ Graph

▾ Subgraph

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Subset structure

▾ Hypergraph

▾ Graph

▾ Subgraph

Formulation 0

Let $G_E = (E, \mathcal{E}_E)$ be a D778: Graph.

An D548: Ordered pair $G_X = (X, \mathcal{E}_X)$ is a**supergraph** of $G_E$ if and only if

An D548: Ordered pair $G_X = (X, \mathcal{E}_X)$ is a

(1) | $E \subseteq X$ (D78: Subset) |

(2) | $\mathcal{E}_E \subseteq \mathcal{E}_X$ (D78: Subset) |