ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measurable set
Null measurable set
Subnull set
Complete measure
Definition D3774
Complete probability measure
Formulation 0
A D198: Probability measure $\mathbb{P} : \mathcal{F} \to [0, 1]$ is complete if and only if \begin{equation} \forall \, F \in \mathcal{F} \left( \mathbb{P}(F) = 0 \quad \implies \quad \forall \, E \subseteq F : E \in \mathcal{F} \right) \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be D1159: Probability space such that
(i) $\mathsf{Subnull} = \mathsf{Subnull}(P)$ is the D3804: Set of subnull sets in $P$
Then $\mathbb{P}$ is a complete probability measure if and only if \begin{equation} \mathsf{Subnull} \subseteq \mathcal{F} \end{equation}