Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Measurable space
▾
Measurable set
▾
Null measurable set
▾
Subnull set
Complete measure
Formulation 0
A
D85: Unsigned basic measure
$\mu : \mathcal{F} \to [0, \infty]$ is
complete
if and only if \begin{equation} \forall \, F \in \mathcal{F} \left( \mu(F) = 0 \quad \implies \quad \forall \, E \subseteq F : E \in \mathcal{F} \right) \end{equation}
Formulation 1
Let $M = (X, \mathcal{F}, \mu)$ be
D1158: Measure space
such that
(i)
$\mathsf{Subnull} = \mathsf{Subnull}(M)$ is the
D3804: Set of subnull sets
in $M$
Then $\mu$ is a
complete measure
if and only if \begin{equation} \mathsf{Subnull} \subseteq \mathcal{F} \end{equation}
Child definitions
»
D1678: Complete measure space
»
D3774: Complete probability measure