ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Operation ▼ N-operation ▼ Binary operation ▼ Enclosed binary operation ▼ Groupoid ▼ Ringoid ▼ Semiring ▼ Ring ▼ Left ring action ▼ Module ▼ Linear combination ▼ Linear map ▼ Linear form ▼ Distribution ▼ Distributional derivative ▼ Weak derivative ▼ Real matrix function derivative ▼ Euclidean real function derivative ▼ Differentiable euclidean real function ▼ Euclidean real function slope ▼ Euclidean real function slope function ▼ N-times differentiable function ▼ N-times continuously differentiable function ▼ Set of N-times continuously differentiable functions ▼ Set of smooth functions ▼ Schwartz length function
Definition D3953
Schwartz function

Let $\mathbb{R}^D$ be a D5630: Set of euclidean real numbers such that
 (i) $f : \mathbb{R}^D \to \mathbb{C}$ is an D1493: Infinitely differentiable function (ii) $\mathbb{N}^D \subseteq \mathbb{R}^D$ is a D5179: Set of euclidean natural numbers
Then $f$ is a Schwartz function if and only if $$\forall \, \alpha, \beta \in \mathbb{N}^D : \sup_{x \in \mathbb{R}^D} |x^{\alpha} \partial^{\beta} f(x)| < \infty$$

Let $\mathbb{R}^D$ be a D5630: Set of euclidean real numbers such that
 (i) $f : \mathbb{R}^D \to \mathbb{C}$ is an D1493: Infinitely differentiable function (ii) $\mathbb{N}^D \subseteq \mathbb{R}^D$ is a D5179: Set of euclidean natural numbers
Then $f$ is a Schwartz function if and only if $$\forall \, \alpha, \beta \in \mathbb{N}^D : \Vert x^{\alpha} \partial^{\beta} f(x) \Vert_{\infty} < \infty$$