Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Hypergraph
▾
Graph
Graph complement
Formulation 0
Let $G_X = (X, \mathcal{E}_X)$ be a
D778: Graph
.
An
D548: Ordered pair
$G_Y = (Y, \mathcal{E}_Y)$ is a
complement
of $G_X$ if and only if
(1)
$X = Y$
(2)
$\mathcal{E}_Y = \mathcal{P}_2(X) \setminus \mathcal{E}_X$