ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Standard N-operation
Indexed sum
Series
Power series
Complex power series
Analytic complex function
Definition D4715
Analytic real function
Formulation 0
Let $\mathbb{R}$ be the D4369: Standard real metric space such that
(i) $E \subseteq \mathbb{R}$ is a D78: Subset of $\mathbb{R}$
(ii) \begin{equation} E \neq \emptyset \end{equation}
(iii) $x_0 \in E$ is an D1387: Interior point of $E$ in $\mathbb{R}$
A D4364: Real function $f : E \to \mathbb{R}$ is analytic at $x_0$ if and only if \begin{equation} \exists \, R > 0, a \in \mathbb{R}^{\mathbb{N}} : \forall \, x \in B(x_0, R) : f(x) = \sum_{n = 0}^{\infty} a_n (x - x_0)^n \end{equation}
Formulation 1
Let $\mathbb{R}$ be the D4369: Standard real metric space such that
(i) $E \subseteq \mathbb{R}$ is a D78: Subset of $\mathbb{R}$
(ii) \begin{equation} E \neq \emptyset \end{equation}
(iii) $x_0 \in E$ is an D1387: Interior point of $E$ in $\mathbb{R}$
A D4364: Real function $f : E \to \mathbb{R}$ is analytic at $x_0$ if and only if \begin{equation} \exists \, R > 0, a \in \mathbb{R}^{\mathbb{N}} : \forall \, x \in \mathbb{R} \left( |x - x_0| < R \quad \implies \quad f(x) = \sum_{n = 0}^{\infty} a_n (x - x_0)^n \right) \end{equation}