ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measurable map
Random variable
Random number
Random Euclidean number
Random basic number
Random real number
Definition D5215
Random rational number
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{Q}, \mathcal{B}(\mathbb{Q}))$ be the D5264: Standard rational borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{Q}$ is a random rational number on $P$ if and only if \begin{equation} \forall \, E \in \mathcal{B}(\mathbb{Q}) : X^{-1}(E) \in \mathcal{F} \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{Q}, \mathcal{B}(\mathbb{Q}))$ be the D5264: Standard rational borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{Q}$ is a random rational number on $P$ if and only if \begin{equation} \forall \, E \in \mathcal{B}(\mathbb{Q}) : \{ X \in E \} \in \mathcal{F} \end{equation}
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{Q}, \mathcal{B}(\mathbb{Q}))$ be the D5264: Standard rational borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{Q}$ is a random rational number on $P$ if and only if \begin{equation} \sigma_{\text{pullback}, M} \langle X \rangle \subseteq \mathcal{F} \end{equation}