Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{Q}, \mathcal{B}(\mathbb{Q}))$ be the D5264: Standard rational borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{Q}$ is a random rational number on $P$ if and only if
\begin{equation}
\forall \, E \in \mathcal{B}(\mathbb{Q})
: X^{-1}(E) \in \mathcal{F}
\end{equation}