Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Operation
▾
N-operation
▾
Binary operation
▾
Enclosed binary operation
▾
Groupoid
▾
Ringoid
▾
Semiring
▾
Ring
▾
Left ring action
▾
Module
▾
Vector space
▾
Vector subspace
▾
Linear span
▾
Euclidean complex linear span
▾
Complex matrix column space
▾
Complex matrix standard column space
▾
Complex matrix rank
Full rank complex matrix
Formulation 0
Let $A \in \mathbb{C}^{N \times M}$ be a
D999: Complex matrix
.
Then $A$ is a
full rank complex matrix
if and only if \begin{equation} \text{rank} A = \min(N, M) \end{equation}