Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Binary endorelation
▾
Preordering relation
▾
Partial ordering relation
▾
Partially ordered set
▾
Maximal element
Maximum element
Formulation 0
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
maximum element
in $P$ if and only if \begin{equation} \forall \, x \in X : (x, m) \in {\preceq} \end{equation}
Formulation 1
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
maximum element
in $P$ if and only if \begin{equation} \forall \, x \in X : x \preceq m \end{equation}
Formulation 2
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
maximum element
in $P$ if and only if \begin{equation} X \preceq m \end{equation}
Dual definition
»
Minimum element
Also known as
Greatest element, Orderwise one, Top element
Child definitions
»
D1822: Map maximum
»
D296: Set upper bound
Results
»
R1077: Maximum element is unique