ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Binary endorelation ▼ Preordering relation ▼ Partial ordering relation ▼ Partially ordered set ▼ Maximal element ▼ Maximum element
Definition D296
Set upper bound

Let $P = (X, {\preceq})$ be a D1103: Partially ordered set such that
 (i) $$X \neq \emptyset$$ (ii) $E \subseteq X$ is a D78: Subset
A D2218: Set element $a \in X$ is an upper bound of $E$ in $P$ if and only if $$\forall \, x \in E : (x, a) \in {\preceq}$$

Let $P = (X, {\preceq})$ be a D1103: Partially ordered set such that
 (i) $$X \neq \emptyset$$ (ii) $E \subseteq X$ is a D78: Subset
A D2218: Set element $a \in X$ is an upper bound of $E$ in $P$ if and only if $$\forall \, x \in E : x \preceq a$$

Let $P = (X, {\preceq})$ be a D1103: Partially ordered set such that
 (i) $$X \neq \emptyset$$ (ii) $E \subseteq X$ is a D78: Subset
A D2218: Set element $a \in X$ is an upper bound of $E$ in $P$ if and only if $$E \preceq a$$
Children
 ▶ D552: Set of upper bounds