ThmDex – An index of mathematical definitions, results, and conjectures.
Characteristic function of standard gaussian random real number
Formulation 0
Let $Z \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number.
Let $t \in \mathbb{R}$ be a D993: Real number.
Then \begin{equation} \mathbb{E}(e^{i t Z}) = e^{- t^2 / 2} \end{equation}
Formulation 1
Let $Z \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number.
Let $t \in \mathbb{R}$ be a D993: Real number.
Then \begin{equation} \mathfrak{F}_Z(t) = \exp \left( - \frac{t^2}{2} \right) \end{equation}
Proofs
Proof 1
Let $Z \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number.
Let $t \in \mathbb{R}$ be a D993: Real number.
By definition, we have \begin{equation} Z \overset{d}{=} \lim_{N \to \infty} \sum_{n = 1}^N \frac{\xi_n}{\sqrt{N}} \end{equation} where $\xi_1, \xi_2, \xi_3, \ldots$ are random integers with \begin{equation} \mathbb{P}(\xi_n = -1) = \mathbb{P}(\xi_n = 1) = \frac{1}{2} \end{equation} for all positive integers $n \geq 1$. Using result R2405: Characteristic function uniquely identifies the distribution of a random real number, it is thus sufficient to show that the characteristic function of $\lim_{N \to \infty} \sum_{n = 1}^N \frac{\xi_n}{\sqrt{N}}$ is given by $t \mapsto e^{- t^2 / 2}$.

To this end, denote $S_N : = \sum_{n = 1}^N \xi_n$. Results
(i) R3912: Characteristic function of rademacher random integer
(ii) R3913: Characteristic function for I.I.D. sum of random basic real numbers

imply that $N^{-1/2} S_N$ has characteristic function \begin{equation} \mathbb{E} \left( e^{i \frac{t}{\sqrt{N}} S_N} \right) = \left( \cos \frac{t}{\sqrt{N}} \right)^N \end{equation} By definition of D1927: Standard real cosine function, we have \begin{equation} \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \end{equation} Thus \begin{equation} \cos \frac{t}{\sqrt{N}} = 1 - \frac{t^2}{2! N} + \frac{t^4}{4! N^2} - \frac{t^6}{6! N^3} + \dots \end{equation} so that we have the approximation \begin{equation} \cos \frac{t}{\sqrt{N}} = 1 - \frac{t^2}{2 N} + o_{t \to 0}(1) \end{equation} Therefore, result R3304: Approximating sequence for the natural exponential function shows that the limit for $(\cos \frac{t}{\sqrt{N}})^N$ exists as $N \to \infty$ and \begin{equation} \begin{split} \mathbb{E} \left( e^{i t Z} \right) = \mathbb{E} \left( e^{i t \lim_{N \to \infty} N^{-1/2} S_N } \right) & = \mathbb{E} \left( \lim_{N \to \infty} e^{i \frac{t}{\sqrt{N}} S_N} \right) \\ & = \lim_{N \to \infty} \mathbb{E} \left( e^{i \frac{t}{\sqrt{N}} S_N} \right) \\ & = \lim_{N \to \infty} \left( \cos \frac{t}{\sqrt{N}} \right)^N \\ & = \lim_{N \to \infty} \left( 1 - \frac{t^2}{2 N} + o(1) \right)^N \\ & = \lim_{N \to \infty} \left( 1 + \frac{- t^2 / 2}{N} + o(1) \right)^N = e^{-t^2 / 2} \end{split} \end{equation} $\square$