Let $X \in \text{Gaussian}(\mu, \sigma)$ be a D210: Gaussian random real number.
Let $t \in \mathbb{R}$ be a D993: Real number.
Let $t \in \mathbb{R}$ be a D993: Real number.
Then
\begin{equation}
\mathbb{E}(e^{i t X})
= e^{i \mu t - \sigma^2 t^2 / 2}
\end{equation}