Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Topological space
▾
Set interior
Topologically nowhere dense set
Formulation 0
Let $T = (X, \mathcal{T})$ be a
D1106: Topological space
such that
(i)
$E \subseteq X$
(ii)
$\text{cl} E$ is a
D88: Set closure
for $E$ in $T$
Then $E$ is
topologically nowhere dense
in $T$ if and only if \begin{equation} \text{int}(\text{cl} E) = \emptyset \end{equation}