ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Simple map
Simple function
Measurable simple complex function
Simple integral
Unsigned basic integral
Unsigned basic expectation
Basic expectation
Random real number moment
Expectation
Conditional expectation representative
Conditional expectation
Conditional probability
Definition D2795
Conditionally independent event collection
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathcal{G} \subseteq \mathcal{F}$ is a D470: Subsigma-algebra of $\mathcal{F}$ on $\Omega$
(ii) $E_j \in \mathcal{F}$ is an D1716: Event in $P$ for each $j \in J$
Let $\mathcal{P}_{\mathsf{finite}}(J)$ be the D2337: Set of finite subsets of $J$.
Then $E = \{ E_j \}_{j \in J}$ is a conditionally independent event collection in $P$ given $\mathcal{G}$ if and only if \begin{equation} \forall \, I \in \mathcal{P}_{\mathsf{finite}}(J) : \mathbb{P} \left( \bigcap_{i \in I} E_i \mid \mathcal{G} \right) \overset{a.s.}{=} \prod_{i \in I} \mathbb{P}(E_i \mid \mathcal{G}) \end{equation}
Children
D5508: Conditionally independent collection of event collections