(i) | $\mathcal{G} \subseteq \mathcal{F}$ is a D470: Subsigma-algebra of $\mathcal{F}$ on $\Omega$ |
(ii) | $E_j \in \mathcal{F}$ is an D1716: Event in $P$ for each $j \in J$ |
Then $E = \{ E_j \}_{j \in J}$ is a conditionally independent event collection in $P$ given $\mathcal{G}$ if and only if \begin{equation} \forall \, I \in \mathcal{P}_{\mathsf{finite}}(J) : \mathbb{P} \left( \bigcap_{i \in I} E_i \mid \mathcal{G} \right) \overset{a.s.}{=} \prod_{i \in I} \mathbb{P}(E_i \mid \mathcal{G}) \end{equation}