ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Partially ordered set
Maximal element
Maximum element
Set upper bound
Set of upper bounds
Definition D300
Supremum element
Formulation 0
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
Let $\mathsf{UB} = \mathsf{UB}_P(E)$ be the D552: Set of upper bounds of $E \subseteq X$ with respect to $P$.
A D2218: Set element $x_0 \in X$ is a supremum of $E$ with respect to $P$ if and only if
(1) $x_0 \in \mathsf{UB}$
(2) $\forall \, x \in \mathsf{UB} : (x_0, x) \in {\preceq}$
Formulation 1
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
Let $\mathsf{UB} = \mathsf{UB}_P(E)$ be the D552: Set of upper bounds of $E \subseteq X$ with respect to $P$.
A D2218: Set element $x_0 \in X$ is a supremum of $E$ with respect to $P$ if and only if
(1) $x_0 \in \mathsf{UB}$
(2) $\forall \, x \in \mathsf{UB} : x_0 \preceq x$