Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Topological space
Closure point
Set closure
Topologically dense set
Set of topologically dense sets
Formulation 0
Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
The set of topologically dense sets in $T$ is the D11: Set \begin{equation} \left\{ E \subseteq X : \forall \, U \in \mathcal{T} \left( U \neq \emptyset \quad \implies \quad U \cap E \neq \emptyset \right) \right\} \end{equation}
Formulation 1
Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
The set of topologically dense sets in $T$ is the D11: Set \begin{equation} \left\{ E \in \mathcal{P}(X) : \forall \, U \in \mathcal{T} \left( U \neq \emptyset \quad \implies \quad U \cap E \neq \emptyset \right) \right\} \end{equation}
Child definitions
» D4812: Topological space density