ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Topological space
Closure point
Set closure
Definition D136
Topologically dense set
Formulation 0
Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
A D11: Set $E \subseteq X$ is topologically dense in $T$ if and only if \begin{equation} \forall \, U \in \mathcal{T} \left( U \neq \emptyset \quad \implies \quad U \cap E \neq \emptyset \right) \end{equation}
Children
D244: Baire topological space
D99: Separable topological space
D3111: Set of topologically dense sets