A D62: Sequence $f : \mathbb{N} \to \mathcal{M}$ is convergent in measure in $\mathcal{M}$ with respect to $M$ if and only if
\begin{equation}
\exists \, g \in \mathcal{M} :
\forall \, \varepsilon > 0 :
\lim_{n \to \infty} \mu \left( \{ x \in X : |f_n(x) - g(x)| \geq \varepsilon \} \right)
= 0
\end{equation}