Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Real collection function
Euclidean real function
Real function
Rational function
Integer function
Natural number function
Boolean function
Boolean logic gate
XNOR boolean logic gate
Formulation 0
A D218: Boolean function $f : \{ 0, 1 \} \times \{ 0, 1 \} \to \{ 0, 1 \}$ is an XNOR boolean logic gate if and only if
(1) \begin{equation} f(0, 0) = 1 \end{equation}
(2) \begin{equation} f(1, 0) = 0 \end{equation}
(3) \begin{equation} f(0, 1) = 0 \end{equation}
(4) \begin{equation} f(1, 1) = 1 \end{equation}
Formulation 1
Let $\mathbb{B} = \{ 0, 1 \}$ be the D217: Set of boolean numbers.
A D218: Boolean function $f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ is an XNOR boolean logic gate if and only if
(1) \begin{equation} f(0, 0) = 1 \end{equation}
(2) \begin{equation} f(1, 0) = 0 \end{equation}
(3) \begin{equation} f(0, 1) = 0 \end{equation}
(4) \begin{equation} f(1, 1) = 1 \end{equation}
Also known as
Biconditional boolean logic gate, Exclusive NOR boolean logic gate, Exclusive NOT OR boolean logic gate
Results
» R4091: Biconditional boolean logic gate iff complement of trivial distance function on basic boolean ordered pairs