Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Real collection function
Euclidean real function
Real function
Rational function
Integer function
Natural number function
Boolean function
Boolean logic gate
AND boolean logic gate
Formulation 0
A D218: Boolean function $f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ is an AND boolean logic gate if and only if
(1) \begin{equation} f(0, 0) = 0 \end{equation}
(2) \begin{equation} f(1, 0) = 0 \end{equation}
(3) \begin{equation} f(0, 1) = 0 \end{equation}
(4) \begin{equation} f(1, 1) = 1 \end{equation}
Formulation 1
A D218: Boolean function $f : \{ 0, 1 \} \times \{ 0, 1 \} \to \{ 0, 1 \}$ is an AND boolean logic gate if and only if
(1) \begin{equation} f(0, 0) = 0 \end{equation}
(2) \begin{equation} f(1, 0) = 0 \end{equation}
(3) \begin{equation} f(0, 1) = 0 \end{equation}
(4) \begin{equation} f(1, 1) = 1 \end{equation}
Also known as
Conjunctional boolean logic gate
Results
» R4086: Real arithmetic expressions for AND boolean logic gate