Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Operation
▾
N-operation
▾
Binary operation
▾
Enclosed binary operation
▾
Groupoid
▾
Ringoid
▾
Semiring
▾
Ring
▾
Left ring action
▾
Module
▾
Linear combination
▾
Linear map
▾
Multilinear map
▾
Bilinear map
▾
Sesquilinear map
▾
Hermitian map
▾
Hermitian form
▾
Semi-inner product
▾
Inner product
▾
Inner product space
Orthogonal vector pair
Formulation 1
Let $I$ be an
D1128: Inner product space
such that
(i)
$\langle \cdot, \cdot \rangle$ is the
D34: Inner product
on $I$
(ii)
$x, y \in I$ are each a
D1129: Vector
in $I$
Then $(x, y)$ is an
orthogonal vector pair
in $I$ if and only if \begin{equation} \langle x, y \rangle = 0 \end{equation}