ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Subset structure ▼ Measurable space ▼ Measure space ▼ Pushforward measure ▼ Distribution measure ▼ Probability distribution measure ▼ Probability distribution function
Definition D3793
Exponential probability distribution function

The exponential probability distribution function with parameter $\theta \in (0, \infty)$ is the D4367: Unsigned real function $$\mathbb{R} \to [0, 1], \quad x \mapsto (1 - e^{- \theta x}) I_{x \geq 0}$$
 ▶▶▶ Comment 0 $I_{x \geq 0}$ denotes an D41: Indicator function where the convention N641: Denoting the basis set for an indicator function as a predicate statement has been applied.

The exponential probability distribution function with parameter $\theta \in (0, \infty)$ is the D4367: Unsigned real function $$\mathbb{R} \to [0, 1], \quad x \mapsto \begin{cases} 1 - e^{- \theta x}, \quad & x \in [0, \infty) \\ 0, \quad & x \in (-\infty, 0) \end{cases}$$