Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Matrix transpose
▾
Symmetric matrix
▾
Matrix quadratic form
▾
Positive semidefinite complex matrix
Positive semidefinite real matrix
Formulation 0
A
D6160: Real square matrix
$A \in \mathbb{R}^{N \times N}$ is
positive semidefinite
if and only if \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} : x^T A x \in [0, \infty) \end{equation}
Also known as
Nonnegative definite real matrix
Child definitions
»
D4938: Positive definite real matrix
Results
»
R5591: Real matrix gramians are positive semidefinite