Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Matrix transpose
▾
Symmetric matrix
▾
Matrix quadratic form
▾
Positive semidefinite complex matrix
▾
Positive semidefinite real matrix
Positive definite real matrix
Formulation 0
A
D6160: Real square matrix
$A \in \mathbb{R}^{N \times N}$ is
positive definite
if and only if \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} \setminus \{ \boldsymbol{0} \} : x^T A x \in (0, \infty) \end{equation}
Results
»
R3748: Finite real matrix is positive definite iff symmetric part is