(i) | $1_R$ is a D577: Multiplicative identity in $R$ |

Let $W$ be an D1963: Ordered vector space over $R$ such that

(i) | $\preceq$ is the D378: Ordering relation on $W$ |

**superaffine**from $V$ to $W$ over $R$ if and only if \begin{equation} \forall \, N \in 1, 2, 3, \ldots : x \in V^N : r \in R^N \left[ \sum_{n = 1}^N r_n = 1_R \quad \implies \quad f \left( \sum_{n = 1}^N r_n x_n \right) \succeq \sum_{n = 1}^N r_n f(x_n) \right] \end{equation}