ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Filtered probability space
Random time
Stopping time
Negative binomial random number
Geometric random positive integer
Standard exponential random positive real number
Exponential random positive real number
Erlang random positive real number
Real poisson process
Definition D5211
Standard real poisson process
Formulation 2
Let $T_1, T_2, T_3, \, \ldots \overset{d}{=} \text{Exponential}(1)$ each be a D4000: Standard exponential random positive real number such that
(i) $T_1, T_2, T_3, \, \ldots$ is an D2713: Independent random collection
A D6135: Random unsigned real process $X : [0, \infty) \to \text{Random}(\Omega \to [0, \infty))$ is a standard real poisson process if and only if \begin{equation} \forall \, t \in [0, \infty) : X_t \overset{d}{=} \max \left\{ N \in \mathbb{N} : \sum_{n = 1}^N T_n \leq t \right\} \end{equation}