ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Measure
Real measure
Euclidean real measure
Complex measure
Basic measure
Unsigned basic measure
Unsigned basic integral measure
Radon-Nikodym derivative
Kullback-Leibler divergence
Mutual information
Discrete random variable mutual information
Definition D5724
Simple random variable mutual information
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \mathcal{X}$ and $Y : \Omega \to \mathcal{Y}$ are each a D5723: Simple random variable on $P$
Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty)$.
The mutual information of $(X, Y)$ in base $a$ is the D4767: Unsigned real number \begin{equation} I(X; Y) : = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbb{P}(X = x, Y = y) \log_a \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x) \mathbb{P}(Y = y)} \end{equation}
Formulation 3
Let $X \in \text{Random}(\mathcal{X})$ and $Y \in \text{Random}(\mathcal{Y})$ each be a D5723: Simple random variable such that
(i) \begin{equation} \forall \, x \in \mathcal{X} : p(x ) : = \mathbb{P}(X = x) \end{equation}
(ii) \begin{equation} \forall \, y \in \mathcal{Y} : p(y) : = \mathbb{P}(Y = y) \end{equation}
(iii) \begin{equation} \forall \, x \in \mathcal{X}, y \in \mathcal{Y} : p(x, y) : = \mathbb{P}(X = x, Y = y) \end{equation}
Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty)$.
The mutual information of $(X, Y)$ in base $a$ is the D4767: Unsigned real number \begin{equation} I(X; Y) : = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log_a \frac{p(x, y)}{p(x) p(y)} \end{equation}
Results
R4845: Joint entropy formula for simple mutual information
R4844: Mutual information of a simple random variable with respect to itself
R4849: Symmetry of simple mutual information