ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Action
Action space
Groupoid action space
Translation
Conjugation
Conjugate element
Conjugate matrix
Similar matrix
Diagonalisable matrix
Diagonalizable complex matrix
Definition D6220
Complex matrix diagonal factorization
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
A D5107: Triple $(B, D, B^{-1})$ is a diagonal factorization for $A$ if and only if
(1) $B \in \mathbb{C}^{N \times N}$ is an D5870: Invertible complex matrix
(2) $D \in \mathbb{C}^{N \times N}$ is a D5858: Diagonal complex matrix
(3) $B^{-1}$ is an D2089: Inverse matrix for $B$
(4) \begin{equation} A = B D B^{-1} \end{equation}