ThmDex – An index of mathematical definitions, results, and conjectures.
F13178
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
A D5107: Triple $(B, D, B^{-1})$ is a diagonal factorization for $A$ if and only if
(1) $B \in \mathbb{C}^{N \times N}$ is an D5870: Invertible complex matrix
(2) $D \in \mathbb{C}^{N \times N}$ is a D5858: Diagonal complex matrix
(3) $B^{-1}$ is an D2089: Inverse matrix for $B$
(4) \begin{equation} A = B D B^{-1} \end{equation}