Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measurable map
Random variable
Class of random variables
Collection of random variables
Set of random variables
Random collection
Exchangeable random collection
Formulation 0
Let $J$ be a D11: Set such that
(i) $\mathsf{Per}(J)$ is the D2921: Set of permutations on $J$
A D1721: Random collection $X : J \to \mathsf{Random}(\Omega \to \Xi)$ is exchangeable if and only if \begin{equation} \forall \, N \in 1, 2, 3, \ldots : \forall \, j_1, \dots, j_N \in J : \forall \, \sigma \in \mathsf{Per}(J) : (X_{j_1}, \dots, X_{j_N}) \overset{\mathsf{d}}{=} (X_{\sigma(j_1)}, \dots, X_{\sigma(j_N)}) \end{equation}
Results
» R4982: Exchangeable random collection is identically distributed