ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Left ring action
Module
Linear combination
Linear map
Multilinear map
Bilinear map
Sesquilinear map
Hermitian map
Hermitian form
Semi-inner product
Inner product
Complex Lebesgue inner product
Definition D3983
Complex random Lebesgue inner product
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathfrak{L}^2 = \mathfrak{L}^2 (P \to \mathbb{C})$ is a D3083: Set of P-integrable random complex numbers on $P$
The complex Lebesgue inner product on $\mathfrak{L}^2$ is the D4881: Complex function \begin{equation} \mathfrak{L}^2 \times \mathfrak{L}^2 \to \mathbb{C}, \quad (X, Y) \mapsto \int_{\Omega} X \bar{Y} \, d \mathbb{P} \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathfrak{L}^2 = \mathfrak{L}^2 (P \to \mathbb{C})$ is a D3083: Set of P-integrable random complex numbers on $P$
The complex Lebesgue inner product on $\mathfrak{L}^2$ is the D4881: Complex function \begin{equation} \mathfrak{L}^2 \times \mathfrak{L}^2 \to \mathbb{C}, \quad (X, Y) \mapsto \mathbb{E}( X \bar{Y} ) \end{equation}