Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
Unsigned basic expectation
▾
Basic expectation
▾
Random real number moment
▾
Random real number central moment
▾
Absolute central moment
▾
Random real number variance
▾
Index of dispersion
Underdispered random basic real number
Formulation 0
Let $X \in \text{Random}(\mathbb{R})$ be a
D3161: Random real number
such that
(i)
\begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
(ii)
\begin{equation} \mathbb{E} X \neq 0 \end{equation}
Then $X$ is
underdispered
if and only if \begin{equation} \frac{\text{Var} X}{\mathbb{E} X} < 1 \end{equation}