Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
Unsigned basic expectation
▾
Basic expectation
▾
Random real number moment
▾
Random real number central moment
▾
Absolute central moment
▾
Random real number variance
Index of dispersion
Formulation 0
Let $X \in \text{Random}(\mathbb{R})$ be a
D3161: Random real number
such that
(i)
\begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
(ii)
\begin{equation} \mathbb{E} X \neq 0 \end{equation}
The
index of dispersion
of $X$ is the
D993: Real number
\begin{equation} \text{Disp} X : = \frac{\text{Var} X}{\mathbb{E} X} \end{equation}
Also known as
Variance-to-mean ratio, Variance-to-expectation ratio, Dispersion-to-location ratio
Child definitions
»
D5276: Equidispersed random basic real number
»
D5277: Index of variation
»
D5274: Overdispersed random basic real number
»
D5275: Underdispered random basic real number