Let $X \in \text{Random}(\mathbb{R}^N)$ be a
D4383: Random euclidean real number such that
(i) |
\begin{equation}
\mathbb{E} |X|^2
< \infty
\end{equation}
|
The
variance of $X$ is the
D4571: Real matrix
\begin{equation}
\begin{bmatrix}
\mathbb{E}[(X_1 - \mathbb{E} X_1) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_1 - \mathbb{E} X_1) (X_2 - \mathbb{E} X_2)] & \cdots & \mathbb{E}[(X_1 - \mathbb{E} X_1) (X_N - \mathbb{E} X_N)] \\
\mathbb{E}[(X_2 - \mathbb{E} X_2) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_2 - \mathbb{E} X_2) (X_2 - \mathbb{E} X_2)] & \vdots & \mathbb{E}[(X_2 - \mathbb{E} X_2) (X_N - \mathbb{E} X_N)] \\
\vdots & \cdots & \ddots & \vdots \\
\mathbb{E}[(X_N - \mathbb{E} X_N) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_N - \mathbb{E} X_N) (X_2 - \mathbb{E} X_2)] & \cdots & \mathbb{E}[(X_N - \mathbb{E} X_N) (X_N - \mathbb{E} X_N)]
\end{bmatrix}
\end{equation}