ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Simple map
Simple function
Measurable simple complex function
Simple integral
Unsigned basic integral
Unsigned basic expectation
Basic expectation
Random real number moment
Random real number central moment
Joint central moment
Euclidean real covariance
Definition D5156
Euclidean real variance
Formulation 0
Let $X \in \text{Random}(\mathbb{R}^{N \times 1})$ be a D5210: Random real column matrix such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
The variance of $X$ is the D4571: Real matrix \begin{equation} \mathbb{E} \left[ (X - \mathbb{E} X) (X - \mathbb{E} X)^T \right] \end{equation}
Formulation 1
Let $X \in \text{Random}(\mathbb{R}^N)$ be a D4383: Random euclidean real number such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
The variance of $X$ is the D4571: Real matrix \begin{equation} \begin{bmatrix} \mathbb{E}[(X_1 - \mathbb{E} X_1) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_1 - \mathbb{E} X_1) (X_2 - \mathbb{E} X_2)] & \cdots & \mathbb{E}[(X_1 - \mathbb{E} X_1) (X_N - \mathbb{E} X_N)] \\ \mathbb{E}[(X_2 - \mathbb{E} X_2) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_2 - \mathbb{E} X_2) (X_2 - \mathbb{E} X_2)] & \vdots & \mathbb{E}[(X_2 - \mathbb{E} X_2) (X_N - \mathbb{E} X_N)] \\ \vdots & \cdots & \ddots & \vdots \\ \mathbb{E}[(X_N - \mathbb{E} X_N) (X_1 - \mathbb{E} X_1)] & \mathbb{E}[(X_N - \mathbb{E} X_N) (X_2 - \mathbb{E} X_2)] & \cdots & \mathbb{E}[(X_N - \mathbb{E} X_N) (X_N - \mathbb{E} X_N)] \end{bmatrix} \end{equation}