ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Deduction system
Zermelo-Fraenkel set theory
Collection of sets
Set union
Successor set
Inductive set
Set of inductive sets
Set of natural numbers
Set of integers
Set of rademacher integers
Rademacher integer
Rademacher random integer
Standard rademacher random integer
Standard gaussian random real number
Chi random unsigned real number
Chi-squared random unsigned real number
Definition D5285
Standard chi-squared random unsigned real number
Formulation 0
Let $Z \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number.
A D3161: Random real number $X \in \text{Random}(\mathbb{R})$ is a standard chi-squared random unsigned real number if and only if \begin{equation} X \overset{d}{=} Z^2 \end{equation}