Let $N \in \{ 1, 2, 3, \ldots \}$ be a D5094: Positive integer.
An D995: Integer $a \in \mathbb{Z}$ is an N-bit integer with $N$ bits if and only if
\begin{equation}
\exists \, r_0, r_1, \ldots, r_{N - 1} \in \{ 0, 1 \} :
a
= - r_{N - 1} 2^{N - 1} + \sum_{n = 0}^{N - 2} r_n 2^n
\end{equation}